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MEASUREMENT OF SPATIAL CORRELATION FUNCTIONS
USING IMAGE PROCESSING TECHNIQUES

James G. Berryman
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P. 0. Box 808, L-200
Livermore, CA 94550

Abstract

A procedure for using digital image processing techniques to measure the
spatial correlation functions of composite heterogeneous materials is presented.
Methods for eliminating undesirable biases and warping in digitized photographs
are discussed. Fourier transform methods and array processor techniques for
calculating the spatial correlation functions are treated. By introducing a
minimal set of lattice-commensurate triangles, a method of sorting and storing
the values of three-point correlation functions in a compact one-dimensional
array is developed. Examples are presented at each stage of the analysis using
synthetic photographs of cross sections of a model random material (the
penetrable sphere model) for which the analytical form of the spatial correla-
tions functions is known. Although results depend somewhat on magnification
and on relative volume fraction, it is found that photographs digitized with
512 x 512 pixels generally have sufficiently good statistics for most practical
purposes. To illustrate the use of the correlation functions, bounds on
conductivity for the penetrable sphere model are calculated with a general

numerical scheme developed for treating the singular three-dimensional integrals

which must be evaluated.

Classification numbers: 82A42, 65030, 65U05



1. INTRODUCTION

An elaborate theoretical machinery is available for calculating the
properties of heterogeneous materials if certain spatial correlation functions
for the materials are known. Formulas have been published for calculating
bounds on dielectric constants, magnetic permeabilities, electrical and
thermal conductivities, fluid permeabilities, and elastic constants if the
two-point and three-point correlation functions are known [1-3].

The n-point spatial correlation function is a measure of the probability
of finding n points (in a specified geometrical arrangement) all lying in the
region of space occupied by one constituent of a two-phase material. For
example, the one-point correlation function is the probability that any point
Ties in material 1. The two-point correlation function is the probability
that two points a specified distance apart are both in material 1. The
three-point correlation function is the probability that all three vertices of
a specified triangle lie in material 1.

Since two points lie along a line and three points 1ie in a plane, it is
theoretically possible to measure two-point and three-point as well as one-
point correlation functions by carefully examining photographs of cross sec-
tions of the material to be analyzed. Such measurements have been made by
Corson [4] who took photographs of a selected material, magnified the photo-
graph, superimposed a sampling grid on the photograph, and then recorded the
relevant values for each grid point. The correlation functions were subse-
quently computed by relatively strightforward processing of the tabulated data.
Corson's procedure is not automated. It requires that an operator examine each

grid point of the photograph, decide what numerical value to assign to that



point, and then type that value onto a computer card. This procedure is
prohibitively tedious and time consuming. It is therefore desirable to develop
an automated method for'obtaining this same information by using the now
well-established techniques of image processing.

The purpose of this paper is to take the first steps toward automatic
digital processing of photographs to obtain spatial correlations functions.
First, the spatial correlations functions to be measured are defined. Then, a
model random material is introduced for which (1) the analytical form of the
spatial correlation functions is known and (2) synthetic photographs of cross
sections of the material may be easily generated by computer. The steps in
preprocessing of the digitized photographs to eliminate undesirable biases and
warping are presented. Techniques for calculating one-point, two-point, and
three-point correlation functions are discussed. A method of sorting and
storing the values of three~point correlation functions in a compact one-
dimensional array is developed. The procedures are illustrated throughout the
paper using the synthetic photographs of the model random material. Compari-
sons are made between the analytical results and the measured values of the
spatial correlation functions. It is found that a digitized image with 512 x
512 pixels gives sufficiently good statistics to provide a good reproduction
of the expected values of the spatial correlation functions. The computed

correlation functions are then used to calculate bounds on the conductivity for

a model material.



2. SPATIAL CORRELATION FUNCTIONS

Many discussions of the definition and properties of spatial correlation
functions are available in the literature [1-3]. A recent and most thorough
treatment has been given by Torquato and Stell [5]. For the present purposes,
it will suffice to define the correlation functions and briefly list those

properties which are vital to the subsequent analysis. The discussion is

limited to two-phase composite media.

Let p(¥) be the value of some property of a random composite material
(e.g., electrical or thermal conductivity, dielectric constant, bulk or shear
modulus, etc.) which assumes one of two values (po or p]) depending on whether

¥ is located in a grain of material O or material 1. Then define the function

p(¥) - p,

f(¥)
P1 = Po

0 for r in material O (1)

1 for T in material 1.

Complete knowledge of the local property value p(F¥) implies complete knowledge
of the stochastic variable f(¥). However, our interest in f(¥) is ordinarily
limited to just a few of its statistical properties since these properties are
often sufficient to provide estimates or bounds on the macroscopic average of
the property p(*) of interest.

The present discussion is limited to the three spatial correlation
functions easily measurable using photographs of cross sections of the

material:



5, =(F(R)) = (2)
5,00 = (FIREG + ) o
S305.%,) = (FRIFCF + %ECF + X)) (4)

where the brackets indicate a volume average over the spatial coordinate r.
The volume fraction of constituent 1 is given by ¢. In writing (2)-(4), it
has been assumed that the composite medium is statistically homogeneous so
that on the average only the differences in the coordinate values are important.

If it is assumed further that the random material is also isotropic, then it can

be shown that (letting x = 1X1)

5,(%) = 5,(x) (5)
53(%1,%) = S3(x), x50 uyp)
(6)
= S3xzs X3 uqp)
where
Myp = COS 8y, = §]-§2/|§]||§2| (7)

if lilu > 0 and |§2| > 0. The two-point correlation function S,(x) is the
probability that two points a distance x apart are both in material 1. The
three-point correlation function S3(x].x2,u]2) is the probability that all

three vertices of the triangle defined by (x],xz,ulz) lie in material 1.



Since fz(?) = f(r), it follows easily from the definitions (2)-(4) that

52(0) = 5] = ¢ (8)
and that

1im S3 (es Xy u) = Sz(x). (9)

e+0

If the random mixture possesses no long range order, then

1im Sz(x) = ¢2 (10)

X+»o

and

1im 53(x], Xys plz) = ¢ Sz(xz). (11)

X »®

1 ¢
x2 fixed

Combining (10) and (11) shows that

1im S3(x],x2,u) = ¢3 (12)

assuming that u‘f 1, or, if y = 1, that the difference Xy = Xy is not fixed.

Since f(¥) < 1 for all ¥, elementary bounds on the correlation functions may

also be derived such as
S3(XqsXashy,) < min [Sz(x]),SZ(xz),Sz(x3)] < max [Sz(x]),sz(xz),sz(x3)] < ¢,
(13)

_ .2 2 1/2
where x3 = (xy +x; = Zx]xzulz) .



3. PENETRABLE SPHERE MODEL

One very simple model of a two~phase composite has been in use for many
years [6] and named variously the "randomly imbedded model of spheres® [7] or
the model of “overlapping" or "fully penetrable spheres" [8]. This model
assumes that particle centers are distributed randomly (positions are
uncorrelated) and that each center is surrounded by a sphere of particle
material (say material 0) of fixed radius R. If the density of particle
centers is great enough and the sphere radius large enough, the spheres
defined in this manner will overlap. We will follow Torquato and Stell [8]
and call this the penetrable sphere model.

This model has two distinct advantages for our present course of study:
(1) Analytical results are known for the three spatial correlation functions
of interest. (2) Synthetic photographs of cross sections of such a material

are easily generated by computer.

The analytical solutions for the spatial correlation functions of the
penetrable sphere model have been given by various authors [6-8]. The general

result for the n-point correlation function is

Sn (I-I’ seey 'in_-l) = exp (- ] vn) (]4)
where p is the number density of spheres and V, is the union volume of n
spheres with the fixed radius R and centers at the vertices Xy, ..., in_].
The union volume for one sphere is trivially

=M 3 :



For two spheres, the union volume is [9]

3
:341(1+%x-%) for x < 2
(16)
L8

for x > 2

VZ(xR)/R3 = g

w

The union volume of three spheres centered at the vertices of a triangle with

sides aR, bR, and cR is [8]

V3(aR,bR,cR) = Vz(aR) + Vz(bR) + VZ(CR)

(17)
+ v" (aR,bR,cR) - 3V
3 1
where the intersection volume of three spheres is given by [10]
n 3_4 4 -1 Qabc
V.(aR,bR,cR)/R® = 2 abc + = tan™ ' ( )
3 ’ 6 3 a2 + b2 + c2 -8
-a(l- EE) tan™| (——23C
12 b2 + c2 _ a2
(18)
2 .
b -1 2{ca
- b (1 -55) tan ¢ )
12 c2 + a2 - b2
¢ 12/ tan 2. .2 2

a +b -¢



with 0 < tan™) < x. The factor
Q= (% - L3120 (19)

is defined in terms of the circumradius
L/R = abc/[(a+b+c) (atb-c) (b+c-a) (c+a-b) 1172 (20)

of the triangle with sides aR,bR,cR.

To generate a synthetic photograph of a cross section of a block of
penetrable sphere material, consider a unit cube (in Cartesian space x,y,z),
and suppose the desired cross section has z-coordinate z = z, where
R < 29 < 1-R. Using a random number generator, we select z-coordinates
for particle centers. If the i-th z-coordinate 2 satisfies 1245-2j1 < R,
then the cross section at z = z, intersects that sphere and our graphics
package draws a shaded circle in the x,y-plane centered at xj,yj (chosen by
random number generator) with radius rj given by r% = R2 - (z4 - z4)2.

If z4 satisfies 1zg - zj1 > R, we continue generating z-coordinates until
the acceptance criterion is again satisfied. The total number of zj's
generated is determined by the desired volume fraction ¢ and the effective
magnification of the desired photograph (i.e., a feh large particles or many
small particles). Two of the three quantities ¢, R, and p may be chosen

independently since (14) and (15) show that

¢ =exp (- p 2R, (21)
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In our synthetic examples, we have typically chosen p equal to 1000 or 8000
which leads to approximately 100 or 400 circles per cross section. Then,
choosing a target volume fraction ¢ determines the sphere radius R. An
example of a synthetic photograph generated using this algorithm is illustrated
in Figure 1.

This algorithm can also be used to generate synthetic digital data
directly. It has been found useful to have both alternatives available. The
algorithms for measuring the spatial correlation functions can be tested very
well on the synthetic digital data. However, the process of producing a
synthetic photograph and then digitizing the photograph allows us to study the

inevitable flaws introduced by the particular digitizing process used.
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4. PREPROCESSING OF DIGITIZED IMAGES

Flaws in the digitized image of a surface are inevitable. The original
photograph may have distortion, blemishes, non-uniformities, grain noise, etc.
Furthermore, even if the photograph is "perfect®, the process of digitizing the
photograph may introduce errors such as (1) geometric warping (e.g., a lens
aberation or the photograph not lying perfectly flat while being digitized),
(2) loss of resolution (blurring) due to the finite extent of each picture
element (pixel), or (3) quantization noise due to the finite number of inten-
sity levels available per pixel. Nonlinearities in the algorithm for
converting intensity level to pixel value also complicate the analysis. For
the present application, we have chosen to limit discussion to digitized
images which are purely black (0) and white (1) to conform to the discussion
of Section 2 even though the picture elements are themselves spatial averages
of f(¥) in Eq. (1). (This approximation is expected to be satisfactory if the
magnification of the cross section is chosen so that the number of pixels
occurring at the interfaces is small compared to the total.) To obtain the

desired binary digital image requires preprocessing of the record.

Geometric corrections

To detect warp and to aid in its removal, it is helpful to place (for
example) a square frame around the surface to be photographed. On the
synthetic photographs, such a frame can be added easily using standard graphics
software (see Figure 1). For photographs of real surfaces, a frame should be
constructed and care should be taken to include the frame in the field of

vision during the photography. The frame serves as a reference. If the frame
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is not square in the digitized image, steps may be taken to correct the warp.
The method used here is to choose several control points along and at the
corners of the frame (but just inside) and then to expand and square the
picture (now without the frame) so that the desired image occupies the full
512 x 512 pixel area. The expansion is performed using a straightforward
bjlinear interpolation algorithm (supplied by M. R. Portnoff).

This step in the preprocessing appears to be unavoidable. The frame is
necessary to check for warping. However, with the frame in place, the expan-
sion step is required whether or not warping occurs because the frame must not

be present in the image used to obtain the spatial correlation functions.

Vistribution of pixel values

A digitized "black and white" image typically contains 256 shades of
pseudo-gray with values ranging from O (black) to 255 (white). If an original
black and white photograph (such as Figure 1) has no flaws, then the corres-
ponding digitized image will have most of its pixel values clustered around two
values. There will be some spreading of pixel values even in the best of cases
because some of the picture elements occur at interfaces between black and
white (see Figures 2 and 3). These pixels must have some intermediate value
depending on the proportion of black and white contained in its area and on
the particular algorithm used for digitization. The distribution of pixel
values is illustrated most easily by constructing a histogram of these values
for the image (e.g., see Figure 4). This histogram is bimodal and provides
most of the information needed to choose the threshold value required for

generating the final digitized image containing all zeroes and ones. Since
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the two modes in the histogram are widely separated in this-example,
considerable freedom in the éhoice of threshold value i1s still available.
Once a threshold value has been chosen, it is straightforward to generate the
desired binary image (see Figures 5 and 6). Then a visual comparison of the
original digitized image with the binary image is generally sufficient to
determine whether the binary image is a satisfactory representation of the
original; if not, new threshold values may be chosen and new binary images -

generated until a satisfactory binary representation is obtained.

Other corrections

Various other flaws such as blemishes and non-uniform photographic fog can
occur [see Figure 2(a)]. Most of these flaws can be treated using standard
image processing techniques such as clipping and filtering. More detailed
treatment of these problems will not be required here, since we assume the

reader has some familiarity with digital signal processing techniques.
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5. CALCULATING CORRELATION FUNCTIONS

Unce any image warping has been removed and the color spread has been
treated after choosing an appropriate threshold value, the resulting image file
contains only zeroes and ones for the pixel values fij where i, = 1, ..., 512.

Let N = 512 x 512. Then the estimate of the one-point correlation function

from one image is given by

fij. (22)

-
]

Z|—
-t P

The standard deviation of ¢ is given by

(F; - 0212 2 /2112 (23)

ad = r%-z
iJ

since f?i = fiJ‘ Note that (23) is always greater than ¢ if ¢ < 0.5. A more
interesting statistical quantity is the variance of measured ¢'s for images of
several cross sections of the same material or for different segments of the
same image. We will not explore such statistical questions in detail in the

present paper.

Two-point correlations

A two-point correlation function is just an autocorrelation function
of the digital image. Although we have assumed statistical homogeneity and
isotropy in Egs. (3) and (5), these assumptions will only be satisfied
approximately by any particular image. One discretized version of (3) is

< ( 1
S, (myn) = < z f..f. . (24)
2 N2 1<i<i ij 1tm,J+n

) _max
lfngmax
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where imax = 512-m, jmax = 512-n, and N2 = imax X jmax' for 0 < myn < 511.

Another possibility involves recognizing that (24) is a convolution and, as
such, can be performed rapidly using Fourier transform methods. These
techniques are well known and are generally available as standard software on

most image processing systems so we will not elaborate here.

Given the two-dimensional estimate Sz(m,n). we can obtain the desired
one-dimensional (isotropic) correlation function Sz(k) by averaging over the
S, values at a fixed radius k. Except for the cases (0,k) and (k,0), Sz(m,n)

will not generally be known at the points of interest (see Figure 7). There-

fore, we define the function

Sz(k.e) z gz(k-cose, k sin). : - (25)

Whenever k cose and k sine are not both integers, the value of the right
hand side of (25) is defined as the bilinear interpolation from the lattice

values Sz(m.n). Then our choice for the isotropic average of the two-point

correlation function is givén by

2k
S,(k) = zT » 5, (k, B), for 0 <k < 256 (26)
z=

If the lattice values Sz(m.n) were calculated using Fourier convolution, k = 256
is the maximum radius which can be calculated this way because of the redundancy
of the resulting autocorrelation. If the §2(m,n) were calculated using (24), it

is still wise to limit k to 256 or less because of statistical considerations.
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For k greater than zero, the individual terms of the sum in (26) may be

treated as independent estimates of Sz(k). Thus, an estimate of the standard

deviation of Sz(k) is given by

2k
85, (k) = [z : 32 (k, By - s5(k)1V%, for k> 1. (27)
£=

Figure 8 shows an example of the calculated values of Sp(k) for a
synthetic photograph (Figure 2) with ¢ = 0.31. The illustration includes
the expected Sy calculated using (14) and (16) [the dashed line], the
averaged Sy obtained using (26) [the solid line] and for comparison the two
edge estimates gz(k,O) and gz(O,k) [the dot-dash and long-dash/short-dash lines].
As we might expect, all of the estimates agree very well for small k. The
averaged S2 agrees best with the analytical result for all values of k. The edge
estimates differ significantly from each other and from the analytical result
for larger values of k but tend to oscillate around the predicted values. The
statistics appear to be quite good for k < 100 since the averaged 52 value

stays very close to the analytical result in this region.

Three~point correlations

One discretized version of the definition (4) of a three-point correlation

function which can be calculated in a plane is

< 1
Sa(myn; q,r) = 3+ z f,.f. = . (28)
3 Ny ]fjfjmax iJ itm,J+n it+g,j+r

<3S nax
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where i, = 512-max(m,q), jmax = 512-max (n,r), an& N3 = 1. X dpax> for
0 < myn,q,r < 511. Although (27) can be computed quite easily, it is very time
consuming and the storage requirements for the results are prohibitive. For
example, if we limit the arguments to the fange 0 < myn,q,r < 64, the
total storage requirement for the four-dimensional array is over 16 x 106
words. If we note that in the isotropic case the valué of S3 depends only
on the size and shape of a triangle, it is possible to reduce the storage to a
three-dimensional array with about 26 x 104 elements. This amount of
storage is within reasonable limits but we can actually do much better than
this by using the various symmetries of S3.

The most important property of the isotropic S3 for these purposes is
the fact that its value depends only on the size and shape of the triangle
specified by its arguments. Thus, if the triangle has sides a,b,c and the

cosines of the angles opposite these sides a;e respectively

ua.ub.uc. then
53(aobnllc) = 53(boc'l_la) = 53(csasllb) (29)

while the law of cosines gives

2 .2 2 |
+ b° -
ne =2 ng . (30)

and permutations. It is important to account for the symmetries (6) and (29)
when choosing the scheme for calculating and storing the values of 53, other-
wise the stored values will be at least six-fold redundant. Furthermore,

although it is clearly advantageous to compute only values of S3 whose triangle
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vertices lie exactly on three lattice points, it is not advantageous to
compute 53 for every triangle commensurate with the lattice. A scheme which
chooses a minimal set of lattice-commensurate triangles from which any desired
values of S3 can be found by interpolation is believed to be the preferred
solution to the sorting and storing problem.

A minimal set of lattice-commensurate triangles can be uniquely
determined by the fo]lowing'algorithm: Each triangle will be labelled by
three integers (&,m,n). The first integer (&) is the length of the
longest side of the triangle. The vertex of this triangle formed by the
intersection of the longest side and the shortest side is then treated as the
origin (0,0) of an x,y-coordinate system and the 1ongest side of the triangle
is placed along the x-axis so that the second vertex is located at (2,0).

The third vertex of the triangle is then located in the first quadrant at
(myn).
A11 triangles may be sorted in this manner. The third vertex specified

by (m,n) will always lie in a sector of a circle of radius & centered at
L/2

(2,0), bounded below by the x-axis, and on the right by the line x
(see Figure 9). The arc occurs because the side of intermediate length can be
equal to but never longer than &. The line at x = 2/2 occurs because the
smallest side can be equal ‘to but never Tonger than the intermediate side.
Note that, although all right triangles whose sides adjacent to the right
angle are integers are lattice-commensurate triangles, these right triangles
are not included in our minimal subset because the corresponding values of

53 may be computed by interpolation from thoﬁe values which are included.

This point is illustrated in Figure 9 for a right triangle with sides 3, 5,

and 5.83 units.
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Figure 10 shows the sequence of diagrams used to determine the minimal
set of lattice-commensurate triangles for & up to ¢ = 9. Table 1 lists
the number of triangles for each value of & and the total storage
requirement Tz for 2 up to & = 33. For & = 63, the .number of
triangles is 1233 and the total storage requirement is still only T63 =
27095. The required storage has therefore been reduced by almost an order of
magnitude at & = 63.

The penalty to be paid for reducing the storage requirement is the
increased complexity of assigning and later recomputing the one-dimensional
address I;mn of the elements of the three-point corrélation function. The
number of triangles and the storage requirement (Tz) as a function of &
observed in Table 1 are not easily deduced analytically. In fact, this
problem is closely related to a very difficult unsolved problem due to Gauss
concerning the number of lattice points in a circle.with center at the origin
and radius & [11,12]. Lacking an analytical solution to the address
problem, a computationally convenient solution is sought.

First, note that, for our minimal set of triangles, the admissible sets

of triples (2,m,n) with 0 < 2,m,n éatisfy

m< e/2 - (3

and

um02+n2512 or m2+n2g2mh (32)

Next, we choose to assign the addresses Izmn so that (1) all addresses

with fixed ¢ are contiguous,; (2) for given & :all addresses with fixed m
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are contiguous, and (3) Inmn increases whenever &, m, or n increase.

This choice of assignment leads to the following conclusions:

For ¢ =0, 1,

Ilmn =1+ (33)
Fors >2andm=20, 1,

Iypn =L, *m(n+1) (34)
where

LL = IR00 = Tz_] + 1. (35)

Kecall that Tz is the storage requirement for all members of the minimal
set of commensurate triangles with longest side less than or equal to & (see

Table 1). Finally, for £ > 4 and m > 2,

m-1
I =L +p:1 sz +p+t] (36)

where sz is a matrix whose elements are computed once and stored. An
element sz is the total number of lattice points with m = p for case 2.
The matrix elements may be generated very easily using the inequalities (31)
and (32). Table 2 illustrates this matrix for 2 < & < 32.
As examples of the algorithm, we see by using Tables 1 and 2 that 152] =
18+4+ 1+1=24, that I3,,=6+1 =7, and that I, = 85 + 5+6+7+2+1

106. The inverse problem for location 55 is solved as follows: First, T6 < 55

T7, implies &£ = 7. Then 55 - T6 = 12 is greater than 1 + 4 + 5= 10 som = 3.

1A

Finally, n = 55 - (T6 +1) - 10=1. Thus, 55 = 173].
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Having established a procedure for sorting triangles and for storing and
subsequently retreiving the corresponding values of the three-point
correlation function with a compact one-dimensional array, the discussion will
now turn to methods of computing the elements of 53. The chosen storage
algorithm makes the use of Fourier transform methods less desirable for
computing 53 than SZ' We shoula tailor our computational algorithm so
that only those elements of 53 which will be stored are computed. In the
following discussion, the emphasis will be'placed on obtaining an algorithm
convenient for use with an array processor. However, the resulting algorithm
can also be used conveniently even if an array processor ié not available.:

The symmetries of 53 presented in (6) and (29) suggest that the
algorithm for computing should contain every possible oriéntation of the
appropriate lattice-commensurate triangle with one vertex at point (i,j)
summed over all possible points. Figuré 11 shows three possible stencils
which could be used with the given triangle. Note that, although Figure 11(a)
and 11(b) are independent measures of S3 for the same central site, they
supply redundant information when summed over all sites. Of these two
stencils, Figure 11(a) is preferred because the value of every vertex is used
at least twice. This feature can be used to advantage in an array processor
with a vector-add-add-multiple function. Nevertheless, both Figures 11(a) and
11(b) have one significant disadvantage over Figure 11(c). As the t-value
of the commensurate triangle grows, the region of allowed central points
shrinks rapidly like (5]2-2&)2. Furthermore, array processors generally
cannot hold all 512 x 512 values of the image file simultaneously. Typically
about 102 rows of the image may be stored so the allowed region actually

shrinks like (512~28)x\102-2¢). This limitation places a severe constraint
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on the range of triangles for which S3 can be computed (i.e., £ < 50 is
required and realistically & < 25 to obtain good statistics). One
alternative is to try a stencil such as Figure 11(c) which uses one triangle
from each of Figures 11(a) and 11(b). This stencil has its long axis aligned
with the long airection of the stored image and the allowed region shrinks
only Tike (512-2)x(102-n). The use of this stencil places no serious
restrictions on the choice of (&,m,n) since other considerations (computing
time and storage) for a 512 x 512 image 1imit the large side of the triangle
to about & < 64. .

Figure 12 illustrates the results obtained by using the stencil in Figure
11(c) to calculate S3 for Figure 2. The curve displayed is only one of the
larye variety of possible one-dimensional plots of this three-dimensional

quantity. The independent variable p is the muitiplier in the formula
(£,myn) = px(L,M,N) (37)

where (L,M,N) determines the shape of a lattice-commensurate triangle and p
determines its size. Thus, as p varies from O to Po? the argument of S3
varies from (0,0,0) to (po,L,poM,poN). Figure 12(a) shows the result

tTor 53 when only 204 lines of the image are used in the computation while
Figure 12(b) shows the result using 510 Tines. Uther examples have been con-
sidered using each of the possible multiples of 102 lines and it has been found
in general that the computed curves approach the analytical predictions more
closely for larger values of p as the number of image lines used increases.
Furtherimore, it has been found that the agreement using 510 lines is very good
(\20.005) for & < 32 and reasonably good (0.02) for 32 < & < 64. We

conclude that, for the synthetic images studied here at the magnifications

illustrated in Figures 1, 2, and 4, the use of a single photograph is sufficient
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to determine ¢, 5» and 53 to the desired accuracy for most practical

problems. For smaller porosities than those illustrated here, the number of

terms contributing to the sums can be comparatively small with a resuiting

degradation in performance. This statistical problem can be solved by analyzing

photographs of several cross sections of the same material in these cases.

The use of these results and some further refinements will be discussed in

the next section.
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6. BOUNDS ON CONDUCTIVITY

As was mentioned in the Introduction, various formulas proviaing estimates
of physical constants for composite materials are known [3]. Milton [13,14] has
recently shown how to simplify some of these formulas by introducing two
parameters (;] and n]) which depend on the microgeometry of the random
composite through the three-point correlation function S3. Milton applied
this idea to the effective dielectric constant and to the effective bulk and
shear moduli of two-phase composites. The corresponding formulas for the

electrical ana thermal conductivities, the magnetic permeability, and the

diffusivity are the same as the ones for the dielectric constant. We will pose
the discussion here in terms of the electrical (or thermal) conductivity o.

The more difficult cases of bounds on fluid permeability and bounds on elastic
constants for the penetrable sphere model have been treated elsewhere [15,16].
Let the conductivities of the two constituents be 9, and 91 with the

volume fractions ®, and 7 respectively (¢o + ¢; = 1). First, we introduce

the function [17]

£(x) = /—]-—> gL 2X (38)

Va(r) + 2x

Then it is not difficult to show that Milton's simplified upper (a+) and

lower (o ) bounds [13] are given by

o+ = g {_c> c) (39)
-1
= (D), (40)
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where
("); " 9% * 9% (41)
(@ -t @

and the zeta Milton numbers are given by to = 1-¢;and

a' A +1 53("95911)

. . 9
g = lim lim . == [ dr f ds § dy ———— P,(u).
I g0 a'se %% 2 & -1 rs 2 (43)

In (43), Pz(u) is the Legendre polynomial of order 2. The eta Milton
number (n]) is similar in form to (43) but it depends on P4(u) as well

as Pz(u). The bounds on conductivity do not depend on the n's so we will
not discuss them further here except to note that the analysis which follows
applies equally well to them.

To evaluate (43) it is very helpful to yse the various limiting behaviors
of S, and 53 summarized in Egs. (8)-(12). Eq. (11) plus the orthogonality
properties of the Legendre polynomials are sufficient to guarantee in all
cases of practical interest that the upper 1imit o' may be replaced by a
finite maximum or cutoff value A Similarly, the limit in Eq. (9) and
the same orthogonality properties are sufficient to show that singularities of
the integrand at the origin are integrable and lead to a finite value for
(43). If we introduce a small length 4, and separate the integral in (43)

into four contributions to be evaluated independently, phen
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A A

5 .. c c az(r,s)
=1Ila,) =f dr§f ds ——
2 2 A A rs
o 0
A
c a,(a_,s)
+2( ds 22— (44)
A s

o

+ a,(a,a) 0 (AZ) .
2'°0’o 0

The function az(r,s) in (44) is the coefficient of Pz(u) in the

Legendre polynomial expansion of 53

53(rsssl‘) =§ an(rsS)Pn(H) . (45)
n=0
given by
+1
+
an(r.s) = 22 L {1 du53(r,s.u) Pn(u)- (46)

Note that, for n > 1, a, = 0 if either r = 0 or s = 0 and that ao(O,s) = Sz(s).
The second term in (44) arises by substituting a discretized Taylor

expansion for a,

rs) (0 3a,(r,s)
a,(r,s) = a,(0,8) + —F— r+...
2 2 ar r=0
~ a (a.,s) - a,(0,5)
= a2(0,s) 420 x 2 r+ ... (47)
0

= r_ 2
= az(Ao,s) . + 0(r”)
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into the subintegrals

% 4 az(r,s) 8% A az(r,s)
fdr fds —S—— =[ds | dr—=——
0 A v A

A
c a,(a_,s)
= ds_2_§°__
A
0
The third term in (44) is found similarly by writing the discretized version

of the doubie Taylor expansion

aaz(r.s) aaz(r,s)
az(r,s) = a2(0.0) + TL%O rt——— r=3
s=0 s=0
azaz(r.s)
'a—ras———i rs + ...
r=0
s=0
(49)
- az(Ao,Ao) - ZaZ(AO,O) + aZ(O,O) .
- 2 r‘S 'YX
48

= [ E
azkao,ao) > * oeee o
8

The usefulness of (44) depends on the smallness of the neglected terms of
O\Ag) which depend on second and higher derivatives of 53 near the origin. In
all cases of practical interest, we expect S3 to be a very smooth function
of its arguments close to the origin and, therefore, the use of (44) to

eliminate the singularities in (43) is fully justified.



Since all terms in (44) are nonsingular and the indicated integrations
may be performed by a variety of methods, the main difficulty in evaluating
\43) has been reduced to that of finding a,(r,s). Eq. (46) can be
integrated directly using quadrature or other numerical procedures. However,
several conditions special to this problem suggest that a least squares
fitting technique would be preferable: (1) The function S3 will nearly
always be an empirical function so that a least squares method is natural.
(¢) The coefficients a, and a, are of comparable magnitude [13]; thus, a
least squares method whi;h calculates a, accurately must also calculate a,
simultaneously. This fact is not detrimental, however, since both
coefficients are needed anyway in applications to bounds on elastic
constants. (3) A least squares method is very flexible as to the particular
points used in evaluating the coefficients. This fact can be used to design
an optimum routine which uses just the lattice points chosen earlier in this
paper or convenient interpolated values.

Using the even and odd properties of the Legendre polynomia1s, we can
eliminate the an's for odd n by considering

53(111) + 53('111)
ay + a3, Polug) + agPylug) +..n = 7 = 9(uy) (50)

where the radial arguments have been suppressed for simplicity. Using

standard arguments [18], the least squares method results in the 3 x 3 matrix

inversion problem
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N : Poluy) ? Paluy) (ﬁo \ /? glu;) ‘

:_: Pz(ll.i) :: Pg(“i) f Pz(ll.i)P4(ll.i) az = ? g(lli)Pz(l-li)
o : 2 .

? P4hli) f Pz(ﬂi)P4(|‘i) '!i: P4(lli) la4) \?i: g(ll.l)P4(ll1)/

(51)

where N is the total number of points u; > 0 chosen and the total number
of function evaluations is 2N (or 2N-1 if u = 0 is one of the points). When
a set of u;'s has been chosen, the matrix elements on the left hand side
of (51) may be evaluated just once being independent of the values of r and s.
The choice of upper limit A is difficult in some cases since
az(r.s) does not vanish for large arguments if r and s are nearly equal.
For example, note that it follows from the nature of S, [aé in Egs. (11) and
(12)] that
S3(astan) » ¢ Sy(t) . (52)

Ave

where t = a(2-2u) /2. Substituting (52) into (46), it is easy to show

that

201 _41R2
a,(a,8) = 0 (’-—‘:—?-B—) (53)

for A>R when R .is-a typical particle radius or correlation length. Thus, if we
choose 8. = LR with L = 2 (for example), then the contributions to (46) from

a wedge-shaped region with (l-ZRZ/rZ)]/2 Susglandre=s>a, will be
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neglected. The cumulative contribution from this wedge can be significant for

large values of ¢. To eliminate this difficulty, first note that for any

1/2

function h(t) with t = (r'2 + 52 -2r s y) the following integral

identity holds [14]

« @ +1 h(t)PZ(I-l) .

far [ ds | du —5— =
0 0 =1 rs

[h(0) - h(=)] . (54)

wine

Since the troublesome terms have the form (52), we can add and subtract the

quantity ¢5,(t) from S3(r,s,u)- Then we find

91(aé (55)
t, 2 ¢4 t 577 55
1 1 2¢0¢1
where
+.| . . 2
aé(r,s) = I'I du LSB(rsSsH) - ¢152(t)JP2(u)- (55)

With this definition, aé vanishes much more rapidly than 3 as r=s+=soa
smaller value of A, may be chosen when evaluating (55).

To test this algorithm and to provide an example of the ultimate
usefulness of the three-point correlation functions, Eq. (55) has been
evaluated for the penetrable sphere model (Sect. 3) using (44) and (51). The
results are presented in Figure 13, where ¢ = €y = 1 - % and oF are the upper
and lower bounds on the conductivity when 95 = 1.0 and oy = 0.1 corresponding
to highly conducting spheres imbedded in a poorly conducting material. The

integrals in (44) were performed using the adaptive Monte Carlo integration
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procedure VEGAS [19] used previously for computing variational bounds on
permeability for aggregates of spheres [20]. For the penetrable sphere model,
8. > 2R and typically 8. = 3R or 4R. The lower limit A, was chosen
to be in the range 0.02 < 8,/R <0.08. The parameters for VEGAS were the same
as in [20] except that the target accuracy for each integration was set at 1%.
Various tests of our numerical method have been considered. One very
convenient check on the integration routine again makes use of the identity
(54). Uy substituting S§(t)/¢] for S3(r.s.u) in (56), we find easily that

in this case

I(ay) = 5 1(1 - o3) (57)

since SS(O)/¢] = ¢; and Sg(-)/¢] = ¢?.- The function S%(t)/¢] is not at all
a good estimate of S3 but it does have the same values at the origin and at
infinity. This test case was used to provide some insight into the optimum
choice of parameters at each value of " studied. Another check on the
results is the published table of values for the same integral provided by
Torquato and Stell [8]. Our calculated values agree well with those in [8].
Furthermore, we expect ¢ + ¢ 3s ¢ 1 since in this limit the particles
become well-separated spheres and Milton [13] has pointed out that Eo = ¢ in
this case. ngure 13 shows that T] * ¢ as expected for ¢ > 0.95.

Une important lesson learned from the penetrable sphere example is that
the bounds are not very sensitive functions of ¢. In most cases, a 5% change
in ¢ (at fixed ¢) leads to less than a 1% change in either oi. The fact that

the functions (39) and (40) tend to narrow the error bars in the final result
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is encouraging because the empirically derived three-point correlation

functions may not be known very accurately so we may not expect to have highly

accurate values of ¢ in general.

7. DISCUSSION

beneral methods for processing images of surfaces of random two-phase
composite materials have been developed in this paper. The only examples used
in the text were those for the penetrable sphere model; however, the methods
developed are in no way restricted to this case. The penetrable sphere model
is just a very convenient test case - unique because the analytical solutions
are known for the spatial correlation functions and because model images of
cross sections of the material are easily generated by computer.

The methods presented here may be generalized for multiphase composites
but the corresponding discussion for preprocessing of the digitized image
{Sect. 4) will be considerably more complex due to difficulties with resolu-
tion. Furthermore, the major remaining obstacle to application of these
techniques to real two-phase materials is again one of resolution if the
constituents' colors are not "black" and "white" as assumed here. However,
the resolution problem is not so much an image processing problem as a sample
surface preparation problem.which should be solved in the laboratory prior to

photographing the surface. Such work is in progress and will be reported

elsewhere.
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Storage Storage
No. of Requirement No. of Requirement
L Triangles (Tz) L Triangles (Tl)

0 1 1 17 92 621

1 1 2 18 11 732

2 3 5 19 115 847

3 4 9 20 138 985

4 8 17 21 139 1124

5 10 27 22 164 1288

6 16 43 23 167 1455

7 16 59 24 191 1646

8 25 84 25 199 1845

9 27 111 26 225 2070

v 39 150 27 231 2301
1 40 190 28 259 2560
12 51 241 29 264 2824
13 55 296 30 297 3121
14 70 366 31 300 3421
15 74 440 32 336 3757
16 89 529 33 341 4098

Table 1. Number of triangles in the minimal set of lattice-commensurate
The cumulative total for all

cases with longest side less than or equal to & determines the required

triangles with longest side equal to & units.

storage capacity Ty.
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o 0 0 0 0 0 0 0 0 0 O
6o o0 0 0o 0o 0 0 0 0 O O
4 0 0 0 0 0 0 O0 O o0 O
5 0 0 0 0 O O 0 O 0 O
S 6 0 0 0 0 O0 0 O 0 0O
S 6 0 0 0 0 0 0 0 0 O
e 7 7 0 0 0 0 O0 O 0 O
¢ 7 8 0 0 0 0 0 O O O
7 8 & 8 0 0 0 0 O 0 O
7 8 8 10 0 0 0 0 O0 0 O
7 8 8 1011 0 0 0 O 0 O
7 9 10 11 11 0 O O O O O
6 9 10 11 12 13 0 0 O O O
8 10 11 12 13 13 0 0 O O O
8 10 11 12 13 14 14 0 0 O O
$ 10 11 13 13 14 15 0 0 O O
9 10 12 13 14 15 15 16 0 O O
9 11 12 13 14 156 16 17 O O O
11 13 14 15 16 17 17 18 0 O
8 11 13 14 15 16 17 18 18 0 O
10 12 13 14 16 17 17 18 19 20 O
10 12 13 15 16 17-18 18 18 20 O
10 12 14 15 16 17 18 19 20 21 21
10 12 14 16 17 18 19 20 21 21 22
11 13 14 16 17 18 19 20 21 22 22
11 13 15 16 17 19 20 21 21 22 23
11 13 15 16 18 190 20 21 22 23 23
11 13 15 17 18 19 21 22 22 23 24
11 14 15 17 10 20 21 22 23 24 25
11 14 16 17 190 20 21 22 23 24 25
12 14 16 18 19 20 22 23 24 25 25
12 14 16 18 19 21 22 23 24 25 26

OOOOOOOQOOOOOOOOOOOOOOOO

23
24
24
25
25
28
26
27

OOOOOOOOOOOOQOOOOOQOOOOOOOOO

NN NN
LB - )

Table 2. The matrix M"p for 2 <2 <32 and 1 <p.

Note that M g = 1 for all 2. See Eq. (36).

OQOQOOQOO°°°°°°°°°°°°°°°°°°°°°O°
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F1GURE CAPTIONS

Figure 1. Computer simulation of a cross section of a penetrable sphere
material with volume fraction ¢ = 0.35 and p = 8000 (in dimensionless

units) including the frame.

Figure 2. Digitized images of a simulated cross section of penetrable sphere
material with volume fraction ¢ = 0.31. (a) Digitized negative image after

the frame has been removed. (b) Digitized positive image containing only

zeroes and ones.

Figure 3. vetails of Figure 2. (a) Illustration of the color spread at
particle interfaces. (b) Illustration of the discrete nature of the

interface after a threshold is chosen.
Figure 4. Histogram of pixel values for Figure 2(a).

Figure 5. Uigitized images of a simulated cross section of penetrable sphere
material with volume fraction ¢ = 0.18. (a) Digitized positive image
before choosing threshold. (b) Digitized positive image after choosing

threshold.

Figure 6. Uetails of the model in Figure 5. (a) Example of choosing

threshold too low, creating porosity in center of particles. (b) Example of

a better choice of threshold.
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Figure 7. Illustrating the algorithm for obtaining the jsotropic two-point
correlation function from the computed values at lattice points for a

particular image. See Egs. (25) and (26).

Figure 8. Measured two-point correlation function S, for the photograph in
Figure 2. The averaged S2 obtained using (26) is the solid line. The
expected value for $2 calculated using (14) and (16) for ¢ = 0.31 is the

dashed line. For comparison, the two extreme estimates S2 (0,k) and S2 (k,0)

are shown as the dot-dash and long-dash/short-dash lines.

Figure 9. A1l triangles with longest side L = 6 may be arranged on the
diagram so that the vertex opposite the longest side lies inside the shaded
area. Values of S3 for other triangles such as the right triangle shown
(with sides 3, 5, and 5.83 units) may be obtained by interpolation from the

triangles in the minimal subset of lattice-commensurate triangles.

Figure 10. Sequence of diagrams used to determine the minimal set of

lattice-commensurate triangles for L up to L = 9.

Figure 11. Three possible stencils which may be used to calculate the

three-point correlation function for the triangle (L, M, N) = (3, 1, 1).

Figure 12. Measured three-point correlation functions for the synthetic

material in Figure 2, using only 204 lines of the image in (a) and 510 lines

in (b).

Figure 13. The zeta Milton number ¢ and the upper (c+) and lower
(¢”) bounds on conductivity when o, = 1.0and o, = 0.1 as a

function of volume fraction ¢.
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